Здоровье человека

Лечение, диагностика и профилактика

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

Общая эндокринология: биосинтез и секреция гормонов, действие гормонов - БЕЛКОВЫЕ ГОРМОНЫ

E-mail Print PDF
Смотрите так же...
Общая эндокринология: биосинтез и секреция гормонов, действие гормонов
БЕЛКОВЫЕ ГОРМОНЫ
СУБКЛЕТОЧНАЯ МОРФОЛОГИЯ КЛЕТОК
ПУТЬ БИОСИНТЕЗА
СЕКРЕЦИЯ И РЕГУЛЯЦИЯ
ТИРЕОИДНЫЕ ГОРМОНЫ
БИОСИНТЕЗ
Захват йода
СЕКРЕЦИЯ
Регуляция секреции
Ауторегуляторные эффекты йодида
КАТЕХОЛАМИНЫ
СЕКРЕТОРНЫЙ ПРОЦЕСС В СИМПАТИЧЕСКИХ НЕРВАХ
СТАДИИ, ПРОХОДЯЩИЕ В МОЗГОВОМ СЛОЕ НАДПОЧЕЧНИКОВ
СТАДИИ БИОСИНТЕЗА
СУБКЛЕТОЧНАЯ ЛОКАЛИЗАЦИЯ ЭТАПОВ БИОСИНТЕЗА
РЕГУЛЯЦИЯ СЕКРЕЦИИ
МЕХАНИЗМ ДЕЙСТВИЯ АКТГ
ВИТАМИН D: БИОГЕНЕЗ И МЕТАБОЛИЗМ
ДЕЙСТВИЕ ГОРМОНОВ: РЕГУЛЯЦИЯ ФУНКЦИИ КЛЕТОК-МИШЕНЕЙ БЕЛКОВЫМИ
КЛАССЫ ДЕЙСТВИЯ ГОРМОНОВ И ДОМЕНЫ ГОРМОНАЛЬНОГО КОНТРОЛЯ
РЕЦЕПТОРЫ ПЕПТИДНЫХ ГОРМОНОВ ОПРЕДЕЛЕНИЯ И ОБЩИЕ ЗАМЕЧАНИЯ
ХАРАКТЕРИСТИКА РЕЦЕПТОРОВ ПЕПТИДНЫХ ГОРМОНОВ
РЕЦЕПТОРЫ ПЕПТИДНЫХ ГОРМОНОВ И КОМПОНЕНТЫ МЕМБРАНЫ
НАСЫЩЕННОСТЬ РЕЦЕПТОРОВ И АКТИВАЦИЯ РЕАКЦИЙ КЛЕТОК-МИШЕНЕЙ
РЕГУЛЯЦИЯ РЕЦЕПТОРОВ ПЕПТИДНЫХ ГОРМОНОВ
ВЛИЯНИЕ РЕГУЛЯЦИИ РЕЦЕПТОРОВ НА КЛЕТОЧНЫЕ РЕАКЦИИ
СУДЬБА ГОРМОНРЕЦЕПТОРНОГО КОМПЛЕКСА
МЕДИАТОРЫ ДЕЙСТВИЯ ГОРМОНОВ
ЦИКЛИЧЕСКИЙ АМФ
Роль фосфорилирования в эффектах цАМФ: протеинкиназы
Механизмы гликогенолиза и липолиза
Гормоны, использующие цАМФ в качестве второго медиатора
КАЛЬЦИЙ
Механизмы действия кальция как второго медиатора: кальмодулин
Взаимодействие между кальцием и циклическими нуклеотидами
ДЕЙСТВИЕ ГОРМОНОВ И МЕТАБОЛИЗМ ФОСФОЛИПИДОВ
Гормональные влияния на метаболизм фосфолипидов
Стимуляция кругооборота фосфатидилинозитола и образования полифосфоинозитидов
Стимуляция метилирования фосфолипидов
СТЕРОИДНЫЕ ГОРМОНЫ
Роль связывания в плазме
Рецепторы стероидов
Агонисты и антагонисты стероидов
Влияние гормонрецепторных комплексов на хроматин
Структура гена и процессинг продуктов транскрипции (мРНК)
ТИРЕОИДНЫЕ ГОРМОНЫ
All Pages
БЕЛКОВЫЕ ГОРМОНЫ

Эндокринологи, изучающие биологические функции белковых ж меньших по размеру полипептидных гормонов (менее 100 амино­кислотных остатков в цепи), все более интересуются деталями биосинтеза белков, стремясь понять, каким образом регуляция продукции в клетке секретируемого белкового гормона связана с его функцией. Данные исследований синтеза белковых гормонов и других секретируемых белков, полученные за последние нес­колько лет, показали, что этот процесс включает синтез пред­шественников, превосходящих размерами окончательные секретируемые молекулы и превращающихся в конечные клеточные продукты путем расщепления в ходе транслокации, протекающей в специализированных субклеточных органеллах секреторных кле­ток. Прежде чем более подробно описывать этапы биосинтеза по­липептидных гормонов, целесообразно рассмотреть различные эта­пы биосинтеза белка вообще.

clip_image002

Рис. 3—1 Схема синтеза белка, демонстрирующая этапы переноса генети­ческой информации от ДНК к РНК и белку. Схема специально предусмат­ривает путь биосинтеза секретируемых белков, посттрансляционная моди­фикация которых происходит в месте их синтеза в шероховатом эндоплаз­матическом ретикулуме (ШЭР) (Habener, Potts [4]).

ОБЩИЕ АСПЕКТЫ БИОСИНТЕЗА БЕЛКА

Процессы синтеза белка включают много сложных реакций, с помощью которых информация, исходно закодированная на полинуклеотидном «языке» гена (ДНК) в конце концов будет вы­ражена полиаминокислотным «языком» конечного биологически активного белка. В целях обсуждения эти процессы можно раз­делить на четыре этапа (рис. 3—1).

1. Транскрипция. Синтез РНК в форме предшественни­ков, обладающих большой молекулярной массой, на матрице ДНК.

2. Посттранскрипционная модификация. Конт­ролируемая модификация РНК, включающая этапы образования мРНК из РНК-предшественника путем вырезания и нового объ­единения сегментов РНК, равно как и модификации 3-конца РНК за счет полиаденилирования и 5 -конца за счет добавления 7-метилгуанозиновых «колпачков».

3. Трансляция. Сборка аминокислот с помощью специфи­ческого взаимодействия антикодонов аминоацилированных тРНК,— «носителей» с соответствующими кодонами мРНК, связанной с полирибосомами, и, наконец, полимеризации аминокислот с обра­зованием полипептидной цепи.

4. Посттрансляционная модификация. Одна ре­акция или их сочетание, включающее расщепление пептидных связей (превращение биосинтетических предшественников в про­межуточные или окончательные формы белка путем протеолитиче­ского расщепления), образование аминокислотных производных. (гликозилирование, фосфорилирование) и складывание получен­ной полипептидной цепи с приданием ей нативной конфигурации.

Последний этап синтеза белка представляет особый интерес в силу того, что такие посттрансляционные модификации могут являться способом, которым клетка различает отдельные классы белков и направляет их в соответствующие области, где они ока­зывают свое действие [1].

Эта проблема (разделение белков по клеточным пространст­вам после синтеза) уже много лет привлекает внимание специалистов в области клеточной биологии. Установлено, что ти­пичная эукариотическая клетка за определенное время в процес­се цикла синтезирует около 50 000 различных белков [2]. Совре­менные данные свидетельствуют о том, что это множество про­изводимых клеткой различных белков синтезируется общим пулом полирибосом [3]. Каждый вид синтезированных белков на­правляется в специальное место, где проявляется его специфиче­ская биологическая функция. Например, особые группы белков транспортируются в ядро и другие субклеточные органеллы, где они выполняют функции либо регуляторных белков, либо фер­ментов, либо структурных белков, участвующих в биогенезе раз­личных органелл, тогда как другие группы белков синтезируются специально на экспорт из клетки (иммуноглобулины, факторы свертывания крови, сывороточный альбумин и белковые или пеп­тидные гормоны). Понятно, что силы, принимающие участие в этом процессе направленного транспорта белков, должны определяться очень сложным сочетанием информационных сигналов. Другими словами, поскольку информация для этого процесса транслокации может заключаться только во всей, либо в части первичной структуры или в конформационных свойствах самого белка, то посттрансляционная модификация (см. рис. 3—1) может играть решающую роль в определении белковой функции. Как только вновь синтезированный белок высвобождается из комп­лекса мРНК — рибосома — образующаяся цепь, дальнейшая ре­гуляторная роль РНК представляется совершенно невероятной.

Другая проблема, стоящая перед исследователями, работающи­ми в области биосинтеза полипептидных гормонов, заключается в том, каким образом регулируются биосинтетические и секреторные процессы. Исследования регуляторных механизмов ведутся в двух направлениях: 1 — изучение природы клеточных механизмов, — участвующих в сопряжении внеклеточных регуляторных стимулов с внутриклеточными процессами, определяющими изменения об­разования и высвобождения гормонов; 2 — определение стадии синтеза белка, на которую направлена регуляция, т. е. выяснение происходит она на транскрипционном (и претрансляционном), трансляционном или посттрансляционном уровне.

clip_image004

clip_image006

Рис. 3—2. Типичные продуцирую­щие белковые гормоны эндокрин­ные клетки, в которых видны субклеточные органеллы. а — Гипофизарный тиротроф (мышь); б — опухоль у мыши. состоящая из тиротропных клеток, сохраняемая пу­тем серийных подкожных трансплан­таций мышам с гипотиреозом: в — околощитовидная железа быка: Мож­но видеть (резко выраженный ШЭР и редкие секреторные гранулы в опу­холи из тиротропных клеток (см. рис. 3—26) по сравнению с нормаль­ным гипофизарным тиротрофом (см. рис. 3—2а).

Я — ядро: ШЭР — шероховатый эн­доплазматический ретикулум; ПК — пластинчатый комплекс: М — мито­хондрия; ПМ — плазматическая мембрана; СГ — секреторная гранула; ИСТ незрелая секреторная гранула зсг — зрелая секреторная гранула. Электронная микрофотография Х10000.

You are here: