Здоровье человека

Лечение, диагностика и профилактика

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

Технология лекарственных форм и галеновых препаратов - Основные требования к таблеткам и теоретические основы таблетирования

Смотрите так же...
Технология лекарственных форм и галеновых препаратов
История технологии лекарственных форм
Изготовление лекарственных препаратов в средние века
Изготовление лекарственных препаратов в Новое время
Аптечное производство
Промышленное производство лекарственных препаратов
Базовые науки
Фармацевтические факторы
Несовместимость лекарственных веществ
Физическая и физико-химическая несовместимость
Химическая несовместимость
Вспомогательные вещества
Природные вспомогательные вещества
Синтетические и полусинтетические вспомогательные вещества
Вспомогательные вещества
Сложные эфиры парагидроксибензойной кислоты
Системы классификации лекарственных форм
Твердые лекарственные формы
Технология порошков
Таблетки
Основные требования к таблеткам и теоретические основы таблетирования
Технология таблеток
Сухое гранулирование
Основные группы вспомогательных веществ для таблетирования
Покрытие таблеток оболочками
Методы нанесения пленочных покрытий
Перспективы развития технологии таблеток
Драже
Мягкие лекарственные формы
Желатиновые капсулы
Микрокапсулы
Ректальные лекарственные формы
Глазные лекарственные формы
Растворители и экстрагенты
Свойства спирта как растворителя и экстрагента
All Pages

Основные требования к таблеткам и теоретические основы таблетирования


К таблеткам предъявляются 3 основные требования:

1) точность дозирования – однородность (равномерность) распределения действующего вещества в таблетке; а также правильность веса таблетки;

2) механическая прочность. Твердость, ломкость, хрупкость характеризуют качество таблеток. Таблетки должны обладать достаточной прочностью, чтобы оставаться неповрежденными при механических воздействиях в процессе упаковки, транспортировки и хранения.

3) Распадаемость – способность распадаться или растворяться в сроки, регламентируемые НТД.

Точность дозирования. Зависит от многих условий. Во-первых, от однородности таблетируемой массы, которая обеспечивается при тщательном перемешивании лекарственных и вспомогательных веществ и равномерном распределении их в общей массе. Если масса состоит из частиц разного размера (разной массы), то при встряхивании загрузочной воронки смесь расслаивается: крупные частицы остаются сверху, мелкие опускаются вниз. Расслаивание вызывает изменение массы таблеток. Говоря об однородности материала, имеют в виду также однородность его по форме частичек. Очевидно, что частички, имеющие разное пространственное очертание при одной и той же массе, будут размещаться в матричном гнезде с разной компактностью, что также отразится на массе таблеток.

Во-вторых! Точность дозирования зависит от быстроты и безотказности заполнение матричного гнезда. Если за короткое время пребывания воронки над матричным отверстием высыпается меньше материала, чем может принять матричное гнездо, таблетки всегда будут меньшей массы. Каким образом можно избежать всех этих неприятностей?! Различие формы, соответственно, массы частиц, отсюда их расслаивание и поступление в матрицу таблеточной машины с разной скоростью? Прибегая к гранулированию!

Гранулирование – процесс превращения порошкообразного материала в частицы (зерна) определенной величины. Невозможно добиться абсолютной однородности гранул, однако, варьируя соотношение фракций гранулята, можно установить оптимальный состав.

Гранулирование улучшает сыпучесть, обеспечивает равномерную скорость поступления в матричное гнездо строго определенного количества таблетируемой массы.

Механическая прочность. Ее обуславливает взаимосцепляемость частиц. Какие же силы обеспечивают сцепление частиц при таблетировании? Каков механизм превращения сыпучего материала, состоящего из отдельных, не связанных между собой частиц, в твердое тело – таблетку? В начале процесса прессование таблетируемая масса уплотняется, происходит более тесное сближение частиц и создаются условия для проявления сил межмолекулярного и электростатического взаимодействия. Силы межмолекулярного взаимодействия проявляются при сближении частиц на расстоянии 10-6 - 10-7 см. На первой стадии прессования материала происходит сближение и уплотнение частиц материал за счет смещения частиц относительно друг друга заполнение пустот.

На второй стадии с увеличением давления прессования происходит интенсивное уплотнение материала за счет заполнения пустот и различных видов деформаций, которые способствуют более компактной упаковке частиц. Деформация, которая происходит за счет упругости материала, помогает частицам взаимно вклиниваться, что увеличивает контактную поверхность. Этому же способствует и деформация, происходящая за счет пластических свойств материала, которая заставляет частицы изменять свою форму и плотнее прилегать друг к другу. На второй стадии прессования и сыпучего материала образуется компактное пористое тело, обладающее достаточной механической прочностью.

И, наконец, на третьей стадии прессования происходит объемное сжатие образовавшегося компактного тела.

Механическая прочность зависит от примененного давления, однако, весьма существенно как будет развиваться давление при прессовании. Давление называется жестким, если оно возникнет внезапно – в ударных таблеточных машинах. Поверхность таблетки под ударом пуансонов сильно разогревается (переход механической энергии в тепловую), вследствие чего вещества сплавляются и образуют сплошной цементирующий слой.

Давление называется прогрессивным, если оно нарастает постепенно – в ротационных таблеточных машинах. Прогрессивное давление дает лучшие результаты, поскольку обеспечивает боле длительное воздействие давления на таблетируемую массу. Чем оно длительнее, тем полнее из массы будет удален воздух, который потом, после снятия давления, расширяясь, не сможет оказать разрушающее влияние на таблетки. Кроме того, значительно ослабляется разогревание таблетки у поверхности, что исключает вредное влияние его на вещества, входящие в состав таблетки.

Однако применение высокого давления при прессовании может (-) влиять на качество таблеток и способствовать износу таблеточных машин. Высокое давление можно компенсировать прибавлением веществ, обладающих большим дипольным моментом и обеспечивающих сцепляемость частиц при сравнительно небольших давлениях. Вода, обладая достаточным дипольным моментом, являясь «мостиком» между ними.

Связыванию частиц трудно растворимых и нерастворимых ЛП вода будет препятствовать. В таких случаях требуется добавление веществ с более высокой силой сцепления (растворы крахмала, желатина и др.). И опять прибегают к гранулированию, чтобы с его помощью в таблетируемую массу вводить связывающие вещества, которые повышают пластичность лекарственных веществ, и проявляется свойство, называемое адгезией, которая обуславливает прилипание частиц друг к другу.

Распадаемость. Слишком высокая прочность таблетки влияет на ее распадаемость: время распадаемости возрастает, что (-) сказывается на качестве таблетки. При достаточной механической прочности необходимо обеспечить хорошую распадаемость таблетки. Распадаемость зависит от многих причин: 1) от количества связывающих веществ. Таблетки должны содержать их столько, сколько необходимо для достижения требуемой прочности; 2) от давления прессования: чрезмерное давление ухудшает распадаемость таблетки; 3) от качества разрыхляющих веществ, способствующих распадаемости таблеток. По физической структуре таблетки представляют собой пористое тело; при погружении их в жидкость, последняя проникает во все капилляры, пронизывающие толщу таблетки. Если в таблетке будут иметься хорошо растворимые добавки, то они будут способствовать быстрой распадаемости ее.

You are here: