группа крови диета
 

Медицина и здоровье

  • Increase font size
  • Default font size
  • Decrease font size



Профилактика стоматологических заболеваний. - СТРУКТУРА И СВОЙСТВА ЭМАЛИ ЗУБА

Article Index
Профилактика стоматологических заболеваний.
СТРУКТУРА И СВОЙСТВА ЭМАЛИ ЗУБА
ПОВЕРХНОСТНЫЕ ОБРАЗОВАНИЯ НА ЗУБАХ
СТРОЕНИЕ И ФУНКЦИИ ПАРОДОНТА
РОТОВАЯ ЖИДКОСТЬ
ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ КАРИЕСА ЗУБОВ
РОЛЬ СОЕДИНЕНИЙ ФТОРА В ПРОФИЛАКТИКЕ СТОМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ
Распределение фторида в эмали зуба
РЕМИНЕРАЛИЗАЦИЯ ЭМАЛИ ЗУБОВ
ИНДЕКСЫ, ИСПОЛЬЗУЕМЫЕ ПРИ СТОМАТОЛОГИЧЕСКОМ ОБСЛЕДОВАНИИ
ПАРОДОНТАЛЬНЫЕ ИНДЕКСЫ ИНДЕКС CPITN
ИНДЕКС ГИНГИВИТА (РМА)
КОДЫ И КРИТЕРИИ ОЦЕНКИ ЗУБНОГО НАЛЕТА
ОЦЕНКА ГИГИЕНЫ ПОЛОСТИ РТА
СТОМАТОЛОГИЧЕСКИЙ ЭСТЕТИЧЕСКИЙ ИНДЕКС
СТОМАТОЛОГИЧЕСКОЕ ПРОСВЕЩЕНИЕ
ОБУЧЕНИЕ ПРАВИЛАМ РАЦИОНАЛЬНОГО ПИТАНИЯ
All Pages


СТРУКТУРА И СВОЙСТВА ЭМАЛИ ЗУБА

Эмаль зуба является самой твердой тканью в организме человека, что обусловлено высоким содержанием в ней (до 95%) неорганических веществ, в то время как органические вещества составляют лишь 1,2% веса. Кроме того, в эмали присутствует вода, часть которой находится в свободном, а часть - в связанном виде. Органическое вещество в эмали располагается в виде ламелл, эмалевых пучков и веретен.

Органическая матрица эмали представляет собой макро-молекулярный комплекс, образованный фибриллярным про­теидом и кальций связывающим белком при участии ионов кальция и полярных липидов. Этот комплекс обладает боль­шим сродством с минеральной фазой, служит инициатором процесса кальцификации, регулируя рост кристаллов путем селективного связывания ионов кальция и действуя как свое­образная буферная система.

Минеральная основа эмали зубов представлена гексаго-нальными кристаллами гидрокси-, карбонат-, хлор-, фторапатитов. Менее 2% веса зрелой эмали составляют неапатитные формы, которые являются следами минерала, при­сутствовавшего во время развития зуба, а также результа­том нарушения минерализации после его прорезывания.

Эмаль зуба состоит из эмалевых призм, объединенных в пучки, которые, изгибаясь, идут от эмалеводентинного со­единения к поверхности зуба. Общее число призм в эмали составляет 5-12 миллионов в зависимости от размера зуба.

Между призмами располагаются микропространства, объем которых составляет 0, 5 - 5% объема эмали. Количес­тво микропространств уменьшается с возрастом.

Структурной субмикроскопической единицей призмы яв­ляются кристаллы, которые располагаются почти параллель­но направлению призмы в головке и под углом 20-45 граду­сов - в хвосте призмы.

Кристалл эмали состоит из многих молекул, однако, пра­вильнее представить его в виде ионов. Стабильными в эма­ли являются не отдельные ионы, а кристаллическая решет­ка в целом, поэтому пропорции ионов в кальцифицированных тканях не строго фиксированы, а слегка варьируют в зависимости от условий их формирования.

Основными минеральными компонентами, из которых построены кристаллы апатитов, являются кальций (33-39%) и фосфаты (16-18%), соотношение которых в эмали в сред­нем составляет 1,67. Концентрация этих веществ снижает­ся от поверхностного слоя, наиболее минерализованного, до более глубоких слоев. Различается минерализация и отдельных участков коронки зуба: наиболее минерализованы жевательные поверхности, наименее - придесневые об­ласти всех зубов, фиссуры.

В эмали присутствуют около 40 микроэлементов, концен­трация которых различна. Все микроэлементы можно услов­но подразделить на три группы. К первой группе относятся вещества, концентрация которых выше в поверхностных слоях эмали - фтор, цинк, свинец, сурьма, железо. Вторую группу составляют элементы, содержание которых больше во внут­ренних слоях эмали - натрий, магний, карбонаты. К третьей группе веществ, равномерно распределенным по всей тол­щине эмали, относятся стронций, медь, алюминий, калий.

Осуществление процесса реминерализации эмали возмож­но благодаря свойствам, которыми обладают кристаллы гидроксиапатита. Эмаль ведет себя как пористая мембрана, и в глубину легче проходят небольшие ионы, чем большие моле­кулы, которые адсорбируются на поверхности и могут быть десорбированы без изменения формы кристаллов.

В апатите может обмениваться до трети ионов. Так, ионы кальция могут быть заменены ионами натрия, кремния, строн­ция, свинца, кадмия, гидроксония и других катионов. Ионы гидроксила могут обмениваться на ионы фтора, хлора и другие.

Проникновение веществ в эмаль и ионный обмен происхо­дит в несколько этапов. С поверхности эмали через микро­пространства ионы проникают в водный слой кристалла, отту­да - на поверхность кристалла, и лишь в дальнейшем - с повер­хности в различные отделы кристаллической решетки. Если первая стадия длится несколько минут, то третья - десятки дней.

Важную роль в минерализации зуба после его прорезыва­ния играет такое физиологическое свойство эмали, как про­ницаемость (способность клеток и тканей пропускать газы, воду и растворенные в ней вещества). Проницаемость эмали для различных веществ неодинакова и зависит, например, от величины молекул или заряда иона проникающего вещества. Одновалентные ионы проникают лучше, чем двухвалентные, отрицательно заряженные частицы - лучше, чем положитель­но заряженные. Установлена высокая проникающая способ­ность органических веществ и низкая - кальция и фосфатов (вероятно, вследствие соединения с апатитами эмали).

Неодинакова и проницаемость различных анатомичес­ких отделов зуба из-за неоднородности структуры. Наиболь­шая проницаемость отмечается в пришеечной области эма­ли, ямках, фиссурах. Разная проницаемость наблюдается в различных слоях эмали: средние слои более проницаемы, чем подповерхностные, наименее проницаемы поверхност­ные слои. С возрастом скорость и глубина проникновения веществ в эмаль уменьшается, вероятно, за счет уплотне­ния кристаллической решетки.



 

Народные методы и средства

История и основы медицины

 

ВНИМАНИЕ !!!

Перед употреблением любых упомянутых на сайте лекарственных средств или применением конкретных методик лечения - необходимо проконсультироваться с лечащим врачом.