группа крови диета
 

Медицина и здоровье

  • Increase font size
  • Default font size
  • Decrease font size



Общая токсикология: антидоты, методы обнаружения и определения в организме - Транспорт металлов в живую клетку

Article Index
Общая токсикология: антидоты, методы обнаружения и определения в организме
Антидоты химического действия
РАСЧЕТНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ПДК ВРЕДНЫХ ВЕЩЕСТВ
Расчет ПДК по показателям токсичности
Расчет ПДК по физико-химическим показателям веществ
Расчет ПДК по биологической активности химических связей
ОРГАНИЗАЦИЯ И СОДЕРЖАНИЕ ТОКСИКОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ И ИХ СОЕДИНЕНИЙ КАК ТОКСИКАНТОВ
Транспорт металлов в живую клетку
ОПРЕДЕЛЕНИЕ ТОКСИЧНЫХ КАТИОНОВ, АНИОНОВ И ТОКСИЧНЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ
Обнаружение катионов цинка
Обнаружение катионов никеля
Обнаружение катионов алюминия
Обнаружение катионов меди
Обнаружение катионов ртути
Обнаружение токсичных органических веществ
All Pages

Транспорт металлов в живую клетку

Для того чтобы металл был вовлечен в химические превращения в клетке и оказал вредное или полезное действие, он должен попасть в клетку. Рассмотрим несколько самых простых способов проникновения катионов металлов в клетку на примере катионов натрия Na+ и калия К+, наиболее слабо связанных с транспортирующими их химическими молекулами. Ионы Na+ и К+ играют важнейшие роли в живых организмах: определяют осмотическое давление по обе стороны мембраны и обеспечивают положительные противоионы для таких анионов, как HPO42-, HCO3-, органических молекул, многие из которых и выступают как анионы.

Основу оболочки клетки создает липидная мембрана местами пронизанная инофорными каналами. Простейшие молекулы липидов представляют собой длинный алкильный радикал (алкановый "хвост") и фосфатную группировку ("головка") на конце. Катион металла Na+, K+, попав к стенке клетки, реализует обычно один из двух путей проникновения в клетку. По ионофорной трубке, взаимодействуя с атомами кислорода полиэфирной стенки, катион, как по рельсам, может попасть внутрь клетки.

Если радиус катиона и его природа не позволяют ему проникнуть в отверстие канала, существует другой способ попадания металла в клетку. Молекулы углеводов, а также некоторые лекарственные препараты дают гидрофобные липорастворимые комплексы, которые просачиваются сквозь мембрану клетки. В настоящее время практически для всех металлов периодической системы известны такие прочные гидрофобные липорастворимые комплексы. В частности, например, молекула диметилртути неполярна, имеет гидрофобные метильные группы и благодаря этому просачивается сквозь мембрану.

Биологические молекулы как эффективные ловушки (лиганды) для связывания металлов

Все основные типы биологических молекул, входящие в состав клетки, являются великолепными лигандами для ионов металлов.

По сути дела, для любого металла в клетке обнаруживаются соответствующие ему лиганды. В зависимости от природы металла образуются комплексы существенно различной прочности.

Например ион бериллия, подавляет активность многих ферментов, активируемых ионом Mg2+ в результате замещения ионов магния в его комплексах с ферментами, нуклеиновыми кислотами и другими биолигандами, содержащими фосфатные группы:

clip_image061

Высокопрочные тетраэдрические комплексы бериллия (sp3-гибридизация орбиталей) с фосфатами хорошо растворимы по сравнению с менее прочными октаэдрическими комплексами магния (sp3d2-гибридизация орбиталей). В результате реакции замещения введенный в организм бериллий выводит из организма в виде прочного комплекса фосфор (фосфатные группы). В свою очередь, это приводит к уменьшению содержания кальция в организме. Таким образом, в результате попадания бериллия в организм возникает заболевание «бериллиевый рахит». Так как приведенная выше реакция является обратимой, введение большого избытка солей магния приводит к смещению равновесия влево (принцип Ле Шателье) и восстановлению активности фермента.

Магний и бериллий являются антагонистами, т. е. добавление одного элемента приводит к вытеснению другого. Именно поэтому при отравлении солями бериллия вводят избыток солей магния. Вследствие токсичности соединения бериллия в медицинской практике в качестве лекарственных средств не применяются.

Соединения бериллия токсичны и вызывают ряд заболеваний (бериллиевый рахит, бериллиоз и т.д.). Особенно токсичны летучие соединения бериллия. Как уже было рассмотрено, отрицательное влияние иона Be2+ на физиологические процессы можно объяснить его химическими свойствами (способностью образовывать прочные связи с биолигандами и хорошей растворимостью фосфатов бериллия).

Наиболее выражено химическое сродство к SН-группам у ртути. Очевидно, это связано с тем, что комплексообразующие свойства ртути выше, и она образует более прочные связи с серой.

Токсичность ртути связана с агглютинацией (склеиванием) эритроцитов, ингибированием ферментов. Например сулема HgCl2, вызывает изменение размеров, ос­мотическую хрупкость и снижение деформируемости эритроцитов, которая необходима для их продвижения по капиллярам.

Известно, что токсические свойства элементов зависят от той химической формы, в какой они попадают в организм. Наиболее токсичны те формы, которые растворяются в липидах и легко проникают через мембрану в клетку.

Неорганические соединения ртути под действием ферментов микроорганизмов превращаются в метилртуть. Из-за того, что СНзНg+ растворяется в липидах, она накапливается в организме, в том числе и в мозге. Постепенно концентрируясь, метилртуть вызывает необратимые разрушения в организме и смерть.

Токсичность кадмия связана с его сродством к нуклеиновым кислотам. В результате его присоединения к ДНК нарушается ее функционирование.

Хроническая интоксикация кадмием и ртутью может нарушить минерализацию костей. Это связано с близостью ионных радиусов Cd2+, Hg2+ и Са2+. Поэтому токсичные элементы могут замещать кальций. Это приводит к образованию апатита несовершенной структуры вследствие искажения параметров кристаллического компонента костной ткани. В результате снижается прочность костей.

Соединения Zn, Cd, Hg могут вызывать нарушение белкового обмена, что проявляется в выделении белков плазмы через почки (протеинурия).

Избыток бopa вреден для организма человека. Имеются данные, что большой избыток бора угнетает амилазы, протеиназы, уменьшает активность адреналина. Предполагается, что снижение активности адреналина, являющегося производным полифенола, связано с его взаимодействием с ортоборной кислотой.

Таллий – относится к весьма токсичным элементам. Ион Т1+ склонен, подобно Ag+, образовывать прочные соединения с серосодержащими лигандами:

Тl+ + R–SH ® R–S–Tl + Н+.

Вследствие этого он очень токсичен, так как подавляет активность ферментов, содержащих тиогруппы -SH. Даже весьма незначительные количества соединений Тl+ при попадании в организм вызывают выпадение волос.

Свинец и его соединения относятся к ядам, действующим преимущественно на нервно-сосудистую систему и непосредственно на кровь. Химизм токсического действия свинца весьма сложен. Ионы Рb2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA-группы. Они образуют прочные комплексы с биолигандами.

Ионы РЬ2+ способны взаимодействовать и блокировать сульфгидрильные группы -SH белков, в молекулах ферментов, участвующих в синтезе порфиринов, регулирующих синтез гема и других биомолекул:

R–SH + РЬ2+ + HS–R ® R–S–Pb–S–R + 2H+.

Токсическое действие соединений серебра, как и в случае меди, обусловлено главным образом тем, что ионы серебра взаимодействуют с тиольными серо- и азотсодержащими группами белков, нуклеиновых кислот и других биоорганических веществ.

В водном растворе существуют только комплексные соли золота, например Na3[Аu(S2O3)2], и различные тиоловые бионеорганические комплексы.

Механизм токсического действия соединений золота аналогичен механизму токсического действия соединений меди и серебра. В соответствии с общим правилом для тяжелых металлов одной группы токсичность возрастает с увеличением атомного номера в ряду: Cu ® Ag ® Аu.

Токсичность соединений IIБ-группы увеличивается от цинка к ртути. Водорастворимые соединения оказывают раздражающее действие на кожу. При попадании внутрь организма вызывают отравление.

В целом на введение чуждого металла или избыточного количества металла, участвующего в процессах метаболизма, в клетке откликается хотя бы один класс биологических молекул. При этом свойства связанных с металлом и несвязанных с металлом биологических молекул различаются столь сильно, что говорить о металлах, к которым живая клетка оказалась бы безразличной, просто не приходится. Различия в структуре и составе клеток, встречающихся в организме, приводят к тому, что металлы распределяются между всеми тканями равномерно.

 



 

Народные методы и средства

История и основы медицины

 

ВНИМАНИЕ !!!

Перед употреблением любых упомянутых на сайте лекарственных средств или применением конкретных методик лечения - необходимо проконсультироваться с лечащим врачом.